25 research outputs found

    A novel object tracking algorithm based on compressed sensing and entropy of information

    Get PDF
    Acknowledgments This research is supported by (1) the Ph.D. Programs Foundation of Ministry of Education of China under Grant no. 20120061110045, (2) the Science and Technology Development Projects of Jilin Province of China under Grant no. 20150204007G X, and (3) the Key Laboratory for Symbol Computation and Knowledge Engineering of the National Education Ministry of China.Peer reviewedPublisher PD

    Dimension Reduction Using Samples’ Inner Structure Based Graph for Face Recognition

    Get PDF
    Acknowledgments This research is supported by (1) the Ph.D. Programs Foundation of Ministry of Education of China under Grant (no. 20120061110045) and (2) the Natural Science Foundation of Jilin Province of China under Grant (no. 201115022).Peer reviewedPublisher PD

    Building recognition on subregion’s multi-scale gist feature extraction and corresponding columns information based dimensionality reduction

    Get PDF
    In this paper, we proposed a new building recognition method named subregion’s multiscale gist feature (SM-gist) extraction and corresponding columns information based dimensionality reduction (CCI-DR). Our proposed building recognition method is presented as a two-stage model: in the first stage, a building image is divided into 4 × 5 subregions, and gist vectors are extracted from these regions individually. Then, we combine these gist vectors into a matrix with relatively high dimensions. In the second stage, we proposed CCI-DR to project the high dimensional manifold matrix to low dimensional subspace. Compared with the previous building recognition method the advantages of our proposed method are that (1) gist features extracted by SM-gist have the ability to adapt to nonuniform illumination and that (2) CCI-DR can address the limitation of traditional dimensionality reduction methods, which convert gist matrices into vectors and thus mix the corresponding gist vectors from different feature maps. Our building recognition method is evaluated on the Sheffield buildings database, and experiments show that our method can achieve satisfactory performance

    Co-expression based cancer staging and application

    Get PDF
    A novel method is developed for predicting the stage of a cancer tissue based on the consistency level between the co-expression patterns in the given sample and samples in a specific stage. The basis for the prediction method is that cancer samples of the same stage share common functionalities as reflected by the co-expression patterns, which are distinct from samples in the other stages. Test results reveal that our prediction results are as good or potentially better than manually annotated stages by cancer pathologists. This new co-expression-based capability enables us to study how functionalities of cancer samples change as they evolve from early to the advanced stage. New and exciting results are discovered through such functional analyses, which offer new insights about what functions tend to be lost at what stage compared to the control tissues and similarly what new functions emerge as a cancer advances. To the best of our knowledge, this new capability represents the first computational method for accurately staging a cancer sample

    Histogram of Oriented Gradient Based Gist Feature for Building Recognition

    No full text
    We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist

    RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches

    No full text
    Background. Breast invasive carcinoma (BRCA) is not a single disease as each subtype has a distinct morphology structure. Although several computational methods have been proposed to conduct breast cancer subtype identification, the specific interaction mechanisms of genes involved in the subtypes are still incomplete. To identify and explore the corresponding interaction mechanisms of genes for each subtype of breast cancer can impose an important impact on the personalized treatment for different patients. Methods. We integrate the biological importance of genes from the gene regulatory networks to the differential expression analysis and then obtain the weighted differentially expressed genes (weighted DEGs). A gene with a high weight means it regulates more target genes and thus holds more biological importance. Besides, we constructed gene coexpression networks for control and experiment groups, and the significantly differentially interacting structures encouraged us to design the corresponding Gene Ontology (GO) enrichment based on gene coexpression networks (GOEGCN). The GOEGCN considers the two-side distinction analysis between gene coexpression networks for control and experiment groups. The method allows us to study how the modulated coexpressed gene couples impact biological functions at a GO level. Results. We modeled the binary classification with weighted DEGs for each subtype. The binary classifier could make a good prediction for an unseen sample, and the experimental results validated the effectiveness of our proposed approaches. The novel enriched GO terms based on GOEGCN for control and experiment groups of each subtype explain the specific biological function changes according to the two-side distinction of coexpression network structures to some extent. Conclusion. The weighted DEGs contain biological importance derived from the gene regulatory network. Based on the weighted DEGs, five binary classifiers were learned and showed good performance concerning the “Sensitivity,” “Specificity,” “Accuracy,” “F1,” and “AUC” metrics. The GOEGCN with weighted DEGs for control and experiment groups presented a novel GO enrichment analysis results and the novel enriched GO terms would further unveil the changes of specific biological functions among all the BRCA subtypes to some extent. The R code in this research is available at https://github.com/yxchspring/GOEGCN_BRCA_Subtypes
    corecore